The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition.
نویسندگان
چکیده
The Josephin domain plays an important role in the cellular functions of ataxin-3, the protein responsible for the neurodegenerative Machado-Joseph disease. We have determined the solution structure of Josephin and shown that it belongs to the family of papain-like cysteine proteases, sharing the highest degree of structural similarity with bacterial staphopain. A currently unique structural feature of Josephin is a flexible helical hairpin formed by a 32-residue insertion, which could determine substrate specificity. By using the Josephin structure and the availability of NMR chemical shift assignments, we have mapped the enzyme active site by using the typical cysteine protease inhibitors, transepoxysuccinyl-L-eucylamido-4-guanidino-butane (E-64) and [L-3-trans-(propylcarbamyl)oxirane-2-carbonyl]-L-isoleucyl-L-proline (CA-074). We also demonstrate that the specific interaction of Josephin with the ubiquitin-like domain of the ubiquitin- and proteasome-binding factor HHR23B involves complementary exposed hydrophobic surfaces. The structural similarity with other deubiquitinating enzymes suggests a model for the proteolytic enzymatic activity of ataxin-3.
منابع مشابه
Josephin Domain Structural Conformations Explored by Metadynamics in Essential Coordinates
The Josephin Domain (JD), i.e. the N-terminal domain of Ataxin 3 (At3) protein, is an interesting example of competition between physiological function and aggregation risk. In fact, the fibrillogenesis of Ataxin 3, responsible for the spinocerebbellar ataxia 3, is strictly related to the JD thermodynamic stability. Whereas recent NMR studies have demonstrated that different JD conformations ex...
متن کاملDeubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain.
Spinocerebellar ataxia type 3 is a human neurodegenerative disease resulting from polyglutamine tract expansion. The affected protein, ataxin-3, which contains an N-terminal Josephin domain followed by tandem ubiquitin (Ub)-interacting motifs (UIMs) and a polyglutamine stretch, has been implicated in the function of the Ub proteasome system. NMR-based structural analysis has now revealed that t...
متن کاملAllosteric regulation of deubiquitylase activity through ubiquitination
Ataxin-3, the protein responsible for spinocerebellar ataxia type-3, is a cysteine protease that specifically cleaves poly-ubiquitin chains and participates in the ubiquitin proteasome pathway. The enzymatic activity resides in the N-terminal Josephin domain. An unusual feature of ataxin-3 is its low enzymatic activity especially for mono-ubiquitinated substrates and short ubiquitin chains. How...
متن کاملUnderstanding the Role of the Josephin Domain in the PolyUb Binding and Cleavage Properties of Ataxin-3
Ataxin-3, the disease protein in the neurodegenerative disorder Spinocerebellar Ataxia Type 3 or Machado Joseph disease, is a cysteine protease implicated in the ubiquitin proteasome pathway. It contains multiple ubiquitin binding sites through which it anchors polyubiquitin chains of different linkages that are then cleaved by the N-terminal catalytic (Josephin) domain. The properties of the u...
متن کاملFunctional interactions as a survival strategy against abnormal aggregation
Protein aggregation is under intense scrutiny because of its role in human disease. Although increasing evidence indicates that protein native states are highly protected against aggregation, the specific protection mechanisms are poorly understood. Insight into such mechanisms can be gained through study of the relatively few proteins that aggregate under native conditions. Ataxin-3, the prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 30 شماره
صفحات -
تاریخ انتشار 2005